Linear Relations for a Generalized Tutte Polynomial

نویسنده

  • Gary Gordon
چکیده

Brylawski proved the coefficients of the Tutte polynomial of a matroid satisfy a set of linear relations. We extend these relations to a generalization of the Tutte polynomial that includes greedoids and antimatroids. This leads to families of new identities for antimatroids, including trees, posets, chordal graphs and finite point sets in Rn. It also gives a “new” linear relation for matroids that is implied by Brylawski’s identities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

On the tutte polynomial of benzenoid chains

The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.

متن کامل

Extended and generalized weight enumerators

This paper gives a survey on extended and generalized weight enumerators of a linear code and the Tutte polynomial of the matroid of the code [16]. Furthermore ongoing research is reported on the coset leader and list weight enumerator and its extensions using the derived code and its arrangement of hyperplanes.

متن کامل

Generalized star configurations and the Tutte polynomial

From the generating matrix of a linear code one can construct a sequence of generalized star configurations which are strongly connected to the generalized Hamming weights and the underlying matroid of the code. When the code is MDS, the matrix is generic and we obtain the usual star configurations. In our main result, we show that the degree of a generalized star configuration as a projective ...

متن کامل

Generalized activities and the tutte polynomial

The notion of activities with respect to spanning trees in graphs was introduced by W.T. Tutte, and generalized to activities with respect to bases in matroids by H. Crapo. We present a further generalization, to activities with respect to arbitrary subsets of matroids. These generalized activities provide a unified view of several different expansions of the Tutte polynomial and the chromatic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015